Determining factors for the deployment of Li-Fi technology in Colombian hospital facilities: an exploratory study

Authors

  • Jorge Mauricio Sepulveda Castaño Corporación Universitaria Remington
  • José Luis Lira Turriza Instituto Tecnológico Superior de Calkiní

DOI:

https://doi.org/10.21803/ingecana.3.3.631

Keywords:

Colombian hospitals, LIFI, WIFI, Health risks, Information Technology

Abstract

Wi-Fi technology is widely used to facilitate wireless connectivity, however, several studies have shown that prolonged exposure to its electromagnetic waves can pose risks to human health, interfere with medical devices, and involve security and data privacy issues.
Their use in hospitals is therefore inappropriate. The high-frequency waves emitted by Wi-Fi cause vibration of water molecules in the human body, raising questions about their impact on health. Some studies link Wi-Fi to health problems such as cancer, infertility
and immune disorders. In response, Li-Fi has emerged as a safe alternative for wireless data transmission in hospitals. Li-Fi mitigates electromagnetic interference from Wi-Fi and improves connectivity within hospitals. Its implementation in Colombian hospitals is still
limited, so it is necessary to understand the factors that influence its adoption. A future application of Li-Fi is data transmission in hospitals to mitigate Wi-Fi interference in biomedical equipment and protect patients' health. According to the literature, technical,
economic, regulatory and governance factors can influence the adoption of Li-Fi in hospitals. This study explores such factors in Colombia to guide the implementation of Li-Fi and improve secure wireless connectivity in healthcare facilities. The results suggest
that migrating from Wi-Fi to Li-Fi in hospitals in Medellin - Colombia would improve safety, efficiency and quality of service.

Downloads

Download data is not yet available.

Author Biography

  • Jorge Mauricio Sepulveda Castaño, Corporación Universitaria Remington

    Decano

References

Danker-Hopfe, H., Bueno-López, A., Dorn, H., Schmid, G., Hirtl, R., Eggert, T. (2020). Spending the night next to a router – Results from the first human experimental study investigating the impact of Wi-Fi exposure on sleep. International Journal of Hygiene and Environmental Health, 228, 113550. https://doi.org/10.1016/j.ijheh.2020.113550.

Kuila, C., Maji, A., Murmu, N. C., Kuila, T., & Srivastava, S. K. (2023). Recent advancements in carbonaceous nanomaterials for multifunctional broadband electromagnetic interference shielding and wearable devices. Carbon, 210, 118075. https://doi.org/10.1016/j.carbon.2023.118075.

Hankappan, M., Rifà-Pous, H. y Garrigues, C. (2022). Multi-Channel Man-in-the-Middle attacks against protected Wi-Fi networks: A state of the art review. Expert Systems with Applications, 210, 118401. https://doi.org/10.1016/j.eswa.2022.118401.

Boutet, A., & Cunche, M. (2021). Privacy protection for Wi-Fi location positioning systems. Journal of Information Security and Applications, 58, 102635. https://doi.org/10.1016/j.jisa.2020.102635.

Zhao, T., Yao, H., Ji, X., Yang, X., & Wu, S. (2023). Molecular dynamics simulation of water condensation with nucleus under electromagnetic wave irradiation. Journal of Molecular Graphics and Modelling, 123, 108513. https://doi.org/10.1016/j.jmgm.2023.108513.

Valenzuela, L. O., O'Grady, S. P., & Ehleringer, J. R. (2021). Variations in human body water isotope composition across the United States. Forensic Science International, 327, 110990. https://doi.org/10.1016/j.forsciint.2021.110990.

Serin, M., Soylu, S., Daştan, S. D., Koç, S., & Kurt, A. (2023). Investigation of gene expression levels in thyroid tissues of rats treated with Wi-Fi electromagnetic wave (2.4–3 GHz Wi-Fi RF-EMF). Journal of Molecular Structure, 1288, 135741. https://doi.org/10.1016/j.molstruc.2023.135741.

Martel, J., Chang, S.-H., Chevalier, G., Ojcius, D. M., & Young, J. D. (2023). Influence of electromagnetic fields on the circadian rhythm: Implications for human health and disease. Biomedical Journal, 46(1), 48–59. https://doi.org/10.1016/j.bj.2023.01.003.

Yadav, H., Rai, U., & Singh, R. (2021). Radiofrequency radiation: A possible threat to male fertility. Reproductive Toxicology, 100, 90–100. https://doi.org/10.1016/j.reprotox.2021.01.007.

Sharma, R., Gurjar, D.S., Rahman, E., Raghav, A., Shukla, P., Mishra, V. (2022). LiFi Technology: A Breakthrough for Massive Data Rates in Indoor Applications. In: Mukherjee, S., Muppalaneni, N.B., Bhattacharya, S., Pradhan, A.K. (eds) Intelligent Systems for Social Good. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-19-0770-8_6.

Riurean, S., Antipova, T., Rocha, A., Leba, M., Ionica, A. (2019). VLC, OCC, IR and LiFi Reliable Optical Wireless Technologies to be Embedded in Medical Facilities and Medical Devices. J Med Syst 43, 308. https://doi.org/10.1007/s10916-019-1434-y.

Reddy, N., Kathula, A. Devi Dharmavaram and L. Sai Bondalapati (2022), "Prototype Implementation of Li-Fi based Data Communication System," 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 2022, pp. 01-04. doi: 10.1109/ICECA55336.2022.10009455.

Bikos, A. N., & Sklavos, N. (2020). The future of privacy and trust on the Internet of Things (IoT) for healthcare: Concepts, challenges, and security threat mitigations. In Recent advances in security, privacy, and trust for Internet of Things (IoT) and cyberphysical systems (CPS) (1st ed., pp. 28). Chapman and Hall/CRC. https://doi.org/10.1201/9780429270567-2.

Schneider, M., Haag, F., Khalil, A. K. , & Breunig, D. A. (2022). Evaluation of communication technologies for distributed industrial control systems: Concept and evaluation of 5G and WiFi 6. Procedia CIRP, 107, 588-593. https://doi.org/10.1016/j.procir.2022.05.030.

Devi, G., Jayanthi, N., Rahul, S., Karthick, M. S., Raghavendra, S. G., & Anand, M. (2023). A critical review on Li-Fi technology and its future applications. AIP Conference Proceedings, 2690, 020061. https://doi.org/10.1063/5.0121967.

Haas, H. (2018). LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 3, 26-31. https://doi.org/10.1016/j.revip.2017.10.001.

Hussein, Y. S., & Annan, A. C. (2019). Li-Fi Technology: High data transmission securely. Journal of Physics: Conference Series, 1228(1), 012069. https://doi.org/10.1088/1742-6596/1228/1/012069.

Lee, C., Sufyan, M., Das, S., Spark, A., Videv, S., Rudy, P., Shah, B., McLaurin, M., Haas, H., Raring, J. (2022) 26 Gbit/s LiFi System With Laser-Based White Light Transmitter. in Journal of Lightwave Technology, vol. 40, no. 5, pp. 1432-1439, 1 March1, 2022. https://doi: 10.1109/JLT.2021.3124942.

Ramachandrapura, S., Ahmad, F., Prosad, A., & Raghunathan, V. (2023). Dual-carrier multiplexed laser-based hybrid transmitter for high data-rate indoor optical wireless communication. Optik, 274, 170522. https://doi.org/10.1016/j.ijleo.2023.170522.

Sonawane, A., Pradhan, J., Waghmare, V., Kesari, S., Singh S., Pal, P. (2022)".Complete Data Transmission using Li-Fi Technology with Visible Light Communication," 2022 International Conference on Futuristic Technologies (INCOFT), Belgaum, India, 2022, pp. 1-5, https://doi: 10.1109/INCOFT55651.2022.10094453.

Subhaa, T., Subashb, T., Ranic, N., Jananic, P. (2020). Li-Fi: A Revolution in Wireless Networking. Materials Today: Proceedings, 24, 2403-2413. https://doi.org/10.1016/j.matpr.2020.05.282.

Alfattani, S. (2018). Review of LiFi Technology and Its Future Applications. Journal of Optical Communications, 42(1), 1-12.

Gatti, S., Kumar, N., Nataraja, T., Sarala, S., Kumar N., Kumar B (2021). "Implementation of Health Monitoring System for Patients using Li-Fi Technology," 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, pp. 939-942, https: doi: 10.1109/RTEICT52294.2021.9573585.

Seetharaman, R., Tharun, M., Sreeja Mole, S. S., & Anandan, K. (2022). Application of Li-Fi technique in underwater communication. Materials Today: Proceedings, 51(Part 8), 2249-2253. https://doi.org/10.1016/j.matpr.2021.11.387.

Villavicencio, O. E., Molina, J. R., Morocho, R. F., Novillo, J. P., & Moreno, G. R. (2017). Estudio entre las tecnologías WIFI – LIFI en la optimización del servicio de internet. Journal of Science and Research. 2(8), 50. https://doi.org/10.26910/issn.2528-8083vol2iss8.2017pp50-53.

Alvarado Falcón, K. D., y Litardo Moyano, B. A. (2018). Estudio de la factibilidad sobre el uso y seguridad implicados en la tecnología li-fi (light fidelity) contra la tecnología wi-fi(wireless-fidelity). Guayaquil: universidad de guayaquil.

Ibhaze, A.E., Orukpe, P.E., Edeko, F.O. (2020). Li-Fi Prospect in Internet of Things Network. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication. FICC 2020. Advances in Intelligent Systems and Computing, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-39445-5_21.

Choez Aranea, j. j. (2018). Estudio de factibilidad para la utilización de redes lifi a través de un laboratorio en las carreras de ingeniería en sistemas computacionales y tecnología de la información de la universidad estatal del sur de Manabí. jipijapa – Manabí: Universidad Estatal del sur de Manabí.

Oyola Ponce, I., y Sañudo Alvarado, C. (2016). Estudio de la tecnología Li-Fi como alternativa de comunicación de forma inalámbrica en la biblioteca de la carrera de ingeniería en networking y telecomunicaciones. Guayaquil: Universidad de Guayaquil.

Galleguillo, J. C. (2016). La tecnología Li-fi en las comunicaciones de Argentina. Cordoba: Instituto Universitario Aeronautico.

Downloads

Published

2023-10-05

Issue

Section

Articles

How to Cite

[1]
J. M. Sepulveda Castaño and J. L. . Lira Turriza, “Determining factors for the deployment of Li-Fi technology in Colombian hospital facilities: an exploratory study”, iname, vol. 3, no. 3, p. e-631, Oct. 2023, doi: 10.21803/ingecana.3.3.631.