Characterization of advanced mathematical thinking through the study of the pigeon loft principle

Authors

DOI:

https://doi.org/10.21803/penamer.17.35.794

Keywords:

STEM education, mathematics teaching, higher education

Abstract

Introduction: Teacher training has taken on special relevance, given the constant need to connect learning with the contexts of the new generations, even more so with the boom in technological advances, where mathematics plays a fundamental role. Given this situation, a question arises: What mathematical knowledge should be taught at school? Objective:
To identify the need to strengthen the training of mathematics teachers, strengthening the inverse connections between advanced mathematics and school mathematics, as an element that will allow a better development of activities aimed at developing the
mathematical thinking of students. Based on Tall's approaches (1991), and making use of the problem solving strategy proposed by Mason et al. (2010). Methodology: This work has a qualitative approach, framing the teaching experiment, based on the resolution of non-routine problems related to the pigeon loft principle. Results: Characterization of
advanced mathematical thinking (AMT) in students in their last semesters of a bachelor's degree program in mathematics, showing difficulties in the interpretation of problems and conjectures, highlighting the use of geometric elements as a basis for demonstrations.

Downloads

Download data is not yet available.

References

Burton, L. (1994). Clashing Epistemologies of Mathematics Education: can we see the ‘wood’for the ‘trees'?. Curriculum Studies, 2(2), 203-219.

Briars, D. J., Larson, M., Strutchens, M. E., & Barnes, D. (2015). A Call for Mathematics Education Colleagues and Stakeholders to Collaboratively Engage with NCTM: In Response to Martin's Commentary. Journal of Urban Mathematics Education, 8(2).

Cai, J., &. Lester, F.K (2016). Can Mathematical Problem Solving Be Taught? Preliminary Answers from 30 Years of Research.

Camargo, L. (2021). Estrategias cualitativas de investigación en educación matemática. Universidad de Antioquia, 202 – 224.

Dewey, J. (1916). Democracy and education. The Macmillan Company, 1916. http://140.211.62.101/dewey/contents.html

Dreyfus, T (1991). Advanced mathematical thinking processes. Advanced mathematical thinking.

Dubinsky Ed, (1991). Advanced Mathematical Thinking and the Computer, in Tall D. O. (ed.), Advanced Mathematical Thinking, Kluwer: Holland, 231-248.

Felmer, E. (1 de agosto de 2016). Felmer: “la resolución de problemas debe estar en el corazón de las clases de matemáticas”. Centro de investigación avanzada en educación. https://www.ciae.uchile.cl/index.php?page=view_noticias&id=872&langSite=es#:~:text=La%20resoluci%C3%B3n%20de%20problemas%20deber%C3%ADa,de%20observaci%C3%B3n%2C%20inducci%C3%B3n%20y%20deducci%C3%B3n.

González, C. (2016) Principio del palomar. Estímulo del talento matemático (2015-2016). Universidad Politécnica de Madrid. Recuperado el 18 abril de 2024 https://matematicas.uam.es/~eugenio.hernandez/Estalmat-Materiales/CarlosGonzalez/2015-10-24-CG-Principio%20del%20Palomar.pdf

Gamboa, G.D., Badillo, E., & Ribeiro, M. (2015). El horizonte matemático en el conocimiento para la enseñanza del profesor: geometría y medida en educación primaria. PNA. Revista de Investigación en Didáctica de la Matemática.

Guacaneme-Suárez. EA, Obando-Zapata. G & Garzón, D. (2017). Colombia: Mathematics education and the preparation of teachers. Consolidating a professional and scientific field. Mathematics Teacher Preparation in Central America. Springer.

Hernández-Sampieri, R. & Mendoza, C (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta, Ciudad de México, México: Editorial Mc Graw Hill Education.

Jiménez, R. et. al. (s.f.). Análisis descriptivo de la solución de un problema matemático. Monografías. https://www.monografias.com/trabajos101/analisis-descriptivo-solucion-problema-matematico/analisis-descriptivo-solucion-problema-matematico

Losada, M. (2001). Olimpiadas de Matemáticas: Retos, Logros (y Frustraciones).

Losada, M. (2023). Notas de clases Seminario Pensamiento Matemático. Doctorado en Educación Matemático. Bogotá. Inédito.

Mason, J., Burton, L. & Stacey, K. Thinking Mathematically. Pearson, 210 – 248.

Polya, G. (1970). How to solve it. Editorial Trillas.

Schoenfeld, A. (1992). Learning to think mathematically: problem solving, metacognition, and sense-making in Mathematics. Handbook for Research on Mathematics Teaching and Learning (D. Grouws, Ed.). p. 334-370.

Solorzano J. (2023). Una reflexión sobre la pertinencia del pensamiento matemático avanzado en la formación de los profesores de matemáticas y su relevancia en la práctica docente. III Simposio de Matemática y Educación Matemática, el XII Congreso Internacional de Matemática asistida por Computador y el III Simposio de Competiciones Matemáticas Volumen 10, No. 2 - MEM2023 ISSN: 2346-3724.

Tall, D. (1991). Advanced Mathematical Thinking. Kluwer: Holland, 3-21.

Wasserman, N. (2021). Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction. Journal of Mathematical Behavior.

Zazkis, Rina. (2018). Advanced mathematical knowledge: how is it used in teaching? Cerme 6 Proceding. Simon Fraser University, Canada Roza Leikin, University of Haifa, Israel.

Downloads

Published

2024-11-06

How to Cite

Solorzano-Movilla, jose, & De León Zamora, W. L. (2024). Characterization of advanced mathematical thinking through the study of the pigeon loft principle. Pensamiento Americano, 17(35), e-794. https://doi.org/10.21803/penamer.17.35.794